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The stability of the periodic solution of the system of equations 

Tlz 
-JT i(z,tj (0.1 j 

with discontinuous periodic [ f(~, t + r 1 I f(z, t)l right-hand sides [ z 

and f are n-dimensional vector columns with coordinates zi and fi(i = 1, 

. . . . n)] has been investigated by Aizerman and Gantmakher [ 11. Establish- 

ing what should be understood by the linear approximation in this “dis- 

continuous” case, the authors have proved theorems analogous to those of 

Liapunov. 

The present paper deals with the stability of any solution (periodic 
or nonperiodic) of system (0.11 with discontinuous nonperiodic right-hand 

sides. For this, use is made of the condition for the discontinuities of 

the solution of the linear approximation introduced in paper [ I] for 
periodic systems. Two criteria of stability are established which are 

generalizations of the corresponding theorems of Persidskii [ 21 and 

Perron [ 31, proved by these authors for continuous systems. 

1. Conditions imposed on the right-hand sides of the differential 

equations. Consider the system of differential equations 

where the real vector function f(z, t) is given in the (n + I)-dimensiona 
space L, t inside a curvilinear cylinder C, the axis of which is the 

integral curve z = z’(t) of system (1.1). Let the infinite sequence of 

surfaces* Fa ( t, t) = 0 dissect the cylinder C into regions Ho, intersect- 
ing the curve z = z’(t) for t = to at points Ma. Then there exists a 
positive constant T such that to+ 1 T to 2 T > 0. 

* Here and in what follows the index a assumes the values 1, 2, . . . , m. 

850 



Solution of differential equations with discontinuous right-hand sides 851 

The planes t = t, dissect the regions Ha into angular regions, hounded 

by these planes and the corresponding surfaces F = 0, and into central 

regions, containing the segments of the integralacurve z = z’(t). Con- 

cerning the function f and the surfaces Fa = 0 the following assumptions 

are made: 

1. The function f is continuous in every region Ha (including the 

boundaries Fa = 0 and F,+ 1 = 0). while passing through the surface Fa = 0 

it can experience only discontinuities of the first kind, the magnitudes 

4, of which at points .Mo are hounded in their totality. 

2. Conditions are fulfilled which guarantee in every region Ho unique- 

ness of the solution of system (1.1) for the given initial conditions and 

its continuous dependence on these co’nditions. Also satisfied are the 

conditions for the continuation of the integral curves without any 

obstacles from any region HQ into the adjacent region Ho+ 1. 

3. In every central region 

/(“. t) -/[z”(t), I] P(1) [3 -C(l)] -7 n (2, t) (1.3) 

holds, where P(t) is continuous in every interval* t, < t < ta+ 1, while 

the matrix R(t, t), which is hounded for t > 0 and represents the non- 
1 inear remainder, satisfying the inequality 

) It (z, t) 1 </I / 3 -z” (t) / (t 0, (1 = const) (1.3) 

Here and in what follows 1 z 1 = ( z12 + . . . + z~~)I’~. 

4. The limit relation 

f (5, t) - f [z” (L), t] - &’ 1~ f (2, t) - f Iz” (t), t1 - --5, for (z, t) - AI, 

which holds in any angular region below and above the plane t = t,. is 

fulfilled uniformly with respect to a. 

5. The surfaces F, = 0 are continuous and at points ,Ma they are smooth. 

On one side of the surface F, = 0 we have Fa > 0 while on the other side 

F, < 0 holds. Inside the cylinder C the surfaces Fa = 0 do not intersect 

each other. 

6. Along the integral curve t = z’(t) we have 

5-k 0, 

(tlF, I $.r,+ 

(t/F, / rlt)&f - 
>l->O (‘l’=const) (1.4) 

1 

* Speaking about intervals to < t < ta+ 1, we shall have in mind aiso 
the interval 0 < t < tl 
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Here 
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dFa -= 
dt ! ‘2 f + .$q,_,.,,, 

where dF,/b’z denotes the vector gradient (row) and the indices + and - 
refer correspondingly to the values for t = tQ + 0 and t = t, - 0. 

According to (1.4) the equations for the parts of the surface fi=(~, t) s 

F&O + x, t) = 0, situated below and above the plane t = ta can be 

written correspondingly in the form (x = z - z’(t)) 

t,-tthh,-2-+O(~z~), t - tam= 11,+x $0 ( 1 x I) (1.5) 

where the vector row is given by 

h,*=[%/($$)*]&& 

7. The quarititie’s ha- are bounded in their totality. The ratio in 

(1.5) 

0 (I x ‘) 
,z, -bO for 121-C 

is satisfied uniformly with respect to a. 

2. Linear approximation and its transformation. 
linear approximation of system (1.1) as the set of 

linear equations 

dx 
dt =P (t) x 

which is satisfied by the solution x = x(t) inside every interval tQ < 

(1.6) 

Let us define the 

: (i) the system of 

(2.1) 

t 6 ta+ 1’ and (ii) the conditions of discontinuities at t = ta of the 

integral curves x = x(t), defined by the formulas 

Xaf = s,z,- (2.2) 
where the matrix 

% = II (S&k /IIn, (‘a)ik = ‘UC + ‘%ak- 

‘ik is the Kronecker symbol, hakm 

nates of the vectors ha- and 5,. 
and eai are the corresponding coordi- 

The matrices Sa are bounded in their 
totality. 

For the proof of the criterion of stability according to the linear 

approximation the following lemma will be needed. 

Lemma. For every system of linear approximation (2.1) + (2.2) it is 

possible to construct a Liapunov transformation discontinuous at 



Solution of differential equations mith discontinuous right-hand sides 653 

t = ta* 
x = L (t) y (2.3) 

which transforms this system into a system the matrix of whose coeffi- 

cients A(t) is continuous and bounded for t > 0 and the solutions of which 

are cant inuous: 
dy 
x = A (t) y, y,+ = Ya- (2. 4) 

Proof. Let the values of L(t) and dL/dt for t = t, f 0 be given by 

the formulas 

L,,- = E, (dL/dt),- = 0 (E z II 6,/g III”) (2.5) 

L +=s a oL (dL/dt),+ = P,+S, - S,P,- (2.6) 

The relations (2.6) guarantee the continuity of the matrix A(t) and 

of the solutions y = y(t) of the system (2.4) for t = t,. 

For the proof of the Lemma it is sufficient to construct a matrix 

L(t) according to the given values (2.5) and (2.6) for t = fa f 0 of this 

matrix and its derivative in such a way that in every interval t, < t 6 
fa+ 1 there exist continuous matrices L -l(t) and dL/dt, bounded for t > 0 

in the same way as L(‘t). 

For the existence and boundedness for t > 0 of the matrix L-l(t) it 

is sufficient that the matrix L(t) satisfies the relation 

dcc L (t) ,; r > 0 (t :> 0) (2.7) 

This condition is satisfied for 1 = t, + 0 by virtue of (1.4). since 

from the structure of the matrix SQ follows (see [ 11 , p. 662) that 

holds. 

(d&lW~a+ 
det L,+ = det S, = (dF,jdt)M=- 

The condition (2.7) is also satisfied for t = ta - 0, if we assume 
that in (1.4) we have r < 1. 

Let us pass now to the determination of the values of the matrix L(t) 

inside the intervals ta < t < fa+ 1. For this, consider the column sk of 
the matrix Sa as a vector in an n-dimensional space and take a parallel- 
epiped constructed at the origin of the coordinates on the vectors 

l Except for the discontinuities at t = ta the properties of the matrix 
L(t) are the same as in the classical case, i.e. in every interval 

fad t< ta+i there exist continuous matrices L-l and dL/dt, which 
are bounded for t > 0 in the same way as L. 
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sl, . . . , sn (as edges). Change continuously the coordinates of these 

vectors, keeping their lengths constant, and increasing at the same time 

the volume of the parallelepiped in such a way that for t = to1 = t, + 
l/40,+ 1 - to) the paral lelepiped becomes recta,ngular. 

Take the current values of the coordinates lik of the vectors sk in 

this transformation for the elements of the matrix L(t) = /I Iik( t) 11 ln 
in the corresponding intervals to < t < tar. Then for to < t < tal we 

have 
‘71 

21) 1 li, 12 < rz, dot L (t) .- 1’> 0, (i, k =I, . . , II; 1 <r <co, r-ronst) (2.8) 
i-=1 

Keep for the current values of the coordinates of the vectors the 

previous notations lik(t) and take them for the elements of the matrix 

L(t). In addition carry out the following three transformations: 

(1) In the intervals of time tal < t < ta2 = t, + 1/2(to+ 1 - t,), by 

stretching the edges to the length r, convert the rectangular parallel- 

epipeds into cubes; 

(2) In the time intervals to2 .(, t < t 
a7 = to + 3/4( a+1 - t,) turn 

the cubes so that their edges become parallel to the coordinate axes; 

(3) And, finally, during the time intervals to7 6 t < ta+ 1, compress 
the lengths of the edges to unit lengths. In this way the condition 

L-’ = E is satisfied. 

In the above transformations we connected, by continuous arcs of curves 

and segments of straight lines, pairs of points of the n-dimensional 

space in such a way that the inequalities (2.8) always hold. 

From the actual process of construction of these arcs and segments it 

follows that they are of bounded lengths for all a. Since, in addition, 

the time during which these arcs are described is greater than (l/4) T 

> 0. then the description of these arcs can be carried out with velocities 

the magnitudes of which are bounded by one and the same constant number 

for all a. The motion along the arcs can be started and ended in every 

interval with zero velocities. 

In order that the matrix dL/dt assumes for t = ta + 0 the values given 

by the formulas (2.6). replace the graphs of these functions I ik = I ik( t) 
(i, k = 1, . . . . n) by the nearest smooth curves which coincide with the 
initial curves for t = ta + 0 and in the intervals ta + t/2 < t 4 ta+ 1 
in such a way that the functions for which we kept the previous notations 

tik( t), but which represent the new curves, satisfy the equalities (2.6). 
Since the magnitude of the determinant det L(t) is a continuous function 

of its elements, and the matrices (dL/dt),+ are bounded in their totality, 
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then the new curves can be traced in such a way that the inequalities 

I ii, (t) I s 27, dct L (1) ‘> l,z’l, > 0 (i, /i- I, . . , )L; t Cl) 

are fulfilled and that at the same time the boundedness of the matrix 

dL/dt for t 2 0 is not violated. Hence the Lemma is proved. 

Remark. Usually for the construction of the Liapunov transformation 

the knowledge of the solutions of the corresponding system of differential 

equations is necessary (see [ 4-61 ). In the case under consideration, how- 

ever, for the construction of the transformation x = L(t)y, it is suffi- 

cient to give only the matrices Sa and P(t, f 01. 

3. Criteria of stability according to the linear approximation. 

Theorem f. Let the elements of the normalized (for t = tO) fundamental 

matrix ((Xik( t, ‘O)l[ln(xik( t, tO) = a,,) of the system of linear approxima- 

tion (2.1) + (2.2) satisfy for arbitrary t,, >c 0 and t >/ to the relations 

I xik (t, to) I <B esp 1-B (t - to)] (i, Ii -: 1 I . . 9 11) (2.1) 

where B and p are positive constants which do not depend on tO. Then the 

solution z = z’(t) of the initial nonlinear system (1.1) is asymptotically 

stable provided only that the constant a in the inequality (1.3) is 
sufficiently small. 

In order to prove the Theorem apply to the initial nonlinear system 

(1. l), rewritten in terms of the variations x = z - z”( t), the transform- 

ation (2.3). Then we obtain the system 

dy 
z =: q (y. 1). q (y, 1) :- I,-’ I f(zO-tLy. fi-_1(z”.t)-gyl (3.2) 

which has discontinuous solutions for t = ta, since for these values the 

matrix L(t) is discontinuous. In the space y, t the surfaces Qa,(y, t) I 

cD,(Ly, t) = 0 and the planes t = t, dissect the cylinder C into angular 
and central regions in the same way as in the space Z, t. 

In terms of the variables y the system of linear approximation (2.1)+ 

(2.2) can be rewritten in the form (2.4). From the relations (3. 1) and 
the boundedness of the matrices L and L-l follows that the elements of 

the normalized (at t = fo) fundamental matrix I(yik(‘, tO)(lIn of system 

(2.4) satisfy for arbitrary to >/ 0 and t > t0 the inequalities 

1 ?/jfi (t. to) 1 < nJ csp i---R (l - b)l (i, k = 1, . . . , n) 

where B, and p are positive constants which do not depend on to. If these 
last relations are satisfied, then, as it was proved by Malkin [ 51 ,*there 
exist a positive definite quadratic form Y(y. t) with continuous and 

bounded coefficients which satisfies the relations 
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( > ,g Ay+g=-lyyz (3.3) 

bl I y 12 s V (y, t) G ba I Y I2 (t > 0, 0 < bl < 1 < bz) (3.4) 

Let us investigate the change of values of V(y, t) along the discon- 

tinuous integral curves y = y(t) of the system (3.2). 

f. In a central region. By virtue of (1.2), (1.3) and (3.2) we have 

Q (Y, t) = A (t) y + I<’ (Y, t), R* (y, t) 2: L-‘R (Ly + z’, t), Iq<allYl 

where a1 = am, I > 0 and finite due to the boundedness of L and L-l. De- 

noting by V’ the total derivative of V with respect to t, evaluatedtby 

means of the equations (3.2) and the relations (3.3) and (3.4). we obtain 

where a7 = a, SUPI av/a, 1 I y 1-i 
form V are bounded, then a2 is 

a in (1.3) to be so small that 

V’ 
-f g -p 

From (3.5) follows that the 

when the point of the integral 

satisfy the relation 

for t >/ 0. Since the coefficients of the 

a finite quantity. Supposing the constant 

a2b2 < bl, we obtain 

( 1 
p2= x-2. 

) 
(3.5) 

values of V at instants t and t*( t* < t), 
curve is in one of the central regions, 

V < V’ exp [-_IL~ (t - t*) j (3.6) 

2. In an angular region. Applying the estimating scheme, analogous to 

that used in paper [ 11, and taking into account the properties of the 

form V and the conditions 4, 6 and 7 (Section 1). we obtain that the 

values of V at instants t and t**. when the point of the integral curve 

is in one and the same angular region, satisfy for sufficiently small y 

the inequality 

v<W* (N > 1) (3.7) 

where N does not depend on a. 

Moreover, if the integral curve passes from the point yl, tl on the 

surface of discontinuity & = 0 to the point ya, tQ on the plane t = ta, 
then for sufficiently small y the double inequality 

exp (4 < vv’~J~‘t~’ <expO 

holds, where 8 is an arbitrarily small positive number. 

Let it be given that t > 0 and so small that for 1 y ( ‘c t the 

(3.3) 
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inequalities (3.6), (3.‘7), (3.8) are satisfied and the time At spent in 

any angular region (inside the cylinder 1 y I2 = E ) is less than (l/2 p*) T 

fP2 - u2). where 0 < v < p. Then inside the cylinder ( yl* = 6 the planes 

t = ta’ = 1/2($x+ 1 + ta) do not intersect angular regions. 

Select 6 = 6 bl/N, 8 < l/2@’ - v*)T and the initial point (y,, tl* ) 
of the integral curve in such a way that b21 yO)* < 6. Then by virtue of 

(3.4) we have 

From the inequalities (3.6) and (3.7) follows that in the interval 

t l < t< t l the rate of increase of the function V(y, t) does not exceed 

N.1 T;ereforz. in the whole interval we have V(y, t) < t bI, and in con- 

firmity with (3.4) the inequality ( yl* < 6 ‘holds. 

Using the inequalities (3.6) and (3.8) and the relations to+ 1 - 

to >, T, we obtain 

v2 = VIIXt,. G VI exp I--p2 (T - At) + 61 <Vi exp (-v25”) 

i. e. V2 < VI < 6. Therefore, the arguments used above can be repeated 

for the interval t2 l 6 t 6 to*, and so ,on. 

Consequently, any integral curve of the nonlinear system (3.2), which 

has started for t = t* inside the cylinder 1 y 1 * = z/b*, will remain all 
the time inside the cylinder 1 y(* = E and 

V, = Vt=t,. G VI exp [- (a - 1) v2T] 

Therefore, in every interval t, l < t < t*o + 1 we have 

b~~y~2~V<NV’,~Nb2~yol~exp[-(a-l)v2T 

and y + 0 for t -+ 00. Hence the t.heorem is proved. 

Theorem 2. Let a(t) be an arbitrary vector function, bounded for t ) 0 

and piecewise continuous and with discontinuities only at t = ta: oa’ = 
saoa- . Further let any solution of the system 

(3.9) 

satisfying these equations inside every interval ta < t < t 
a+ 1 and ex- 

periencing discontinuities at t = t, for which xa+ D S=X~ be bounded 

for t >, 0. Then the solution z = z”( t) of the nonlinear system (1.1) is 
asymptotically stable provided only that the constant Q in inequality 
(1.3) is sufficiently small. 

In order to prove the theorem, apply to the system (3.9) the trans- 
formation (2.3) and afterwards to the so obtained system the transform- 
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at ion of Perron [ 61 y = L1u (L1 is a continuous Liapunov matrix). Then 
the system is finally reduced to the form 

du - 
dt 

G (t) u + co* (1) (0’ .~: L1-‘L-‘0,) (3.10) 

where G(t) = llgiklll ” is a triangular matrix bounded and continuous for 

t > 0, i.e. gik( t) I 0 for k > i. 

From the boundedness of all the solutions of (3.9) follows the bound- 

edness of any solution of (3.10) for arbitrary continuous bounded a*(t) 

(t > 0). According to Perron [ 3] this imp1 ies the boundedness of all 2n 

functions 

1 
. 

exp g,, (5) d7, 
s 

62X]’ [i g,i (T) d5] i esp j-- i gii (t) dt]dT (i m= 1,. , n) (3.11) 

10 1, t” 1” 

If, however, the functions (3.11) are bounded, then, as it was proved 

by Malkin [ 71, there exists a positive definite function, admit.ting art 

infinitely small upper limit, the total time derivative of which by 

virtue of the system 

(3.12) 

is a negative definite function. 

Then, according to a theorem of Fersidskii [ 21, the elements of the 

normalized (at t = to) fundamental matrix U(t, to) = I(uik( t, tO)llI” of 

the system (3.12) satisfy for arbitrary t0 3 0, t > to the relations 

) uik (t, to) 1 <D, exp [- ‘, (t -~ hj) (i, li 1,. , ?2) (3.13) 

where B1 and p are positive constants which do not depend on tO. 

If ‘(‘, ‘0) = I(“ik(‘, fo)lll ” is the normalized (at t = to) fundamental 

matrix of the system (3.9) for a(t) E 0, then from (3. 13) we obtain for 

arbitrary tO > 0, t 3 tO the inequal it ies 

1 crik (1, lo) I< lf csy 1-3 (1 -- ro)] (i, li ~~: 1, . , n) 

where B and fl are positive constants which do not depend on tO. 

In this way, if the conditions of Theorem 2 are satisfied, also the 

conditions of Theorem 1 hold, This proves Theorem 2. 
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